Sketch the curve represented by the parametric equations

$$x = 2t^2 - t$$

$$y = \cos \pi t \quad \text{for } -1 \le t \le 2$$

by plotting at least 4 points. Indicate the orientation (direction) of the curve.

SCORE: ____/4 PTS

BY ME

Consider the graph of the polar equation
$$r =$$

[a]

- The eccentricity is _ [i]
- The shape of the graph is a/an HYPERBOL [ii]
- The equation of the directrix is (1/4)[iii]
- [iv] Find the rectangular coordinates of th

SCORE:

[b]

Sketch the graph on the grid provided above. You must provide a scale for the axes & plot all points from part [a][iv] above.

MUST HAVE " =" Fill in the blanks. SCORE: IN ALL ANSWERS] The polar equation of the parabola with focus at the pole and directrix x = -8 is $\sqrt{} = -8$ $r = \frac{3.5}{1+4.5 \text{ mA}} \cdot \frac{3}{3}$ The polar equation of the hyperbola with focus at the pole, eccentricity $\frac{4}{3}$ and directrix y = 5 is $\sqrt{3+4}$ sin O

[a]

[b]

[c] The polar equation of the ellipse with focus at the pole, one vertex at
$$(x, y) = (2, 0)$$
 and directrix $x = 7$ is $(x, y) = (2, 0)$ and directrix $(x, y) = (2, 0)$ and directrix $(x, y) = (2, 0)$

equations
$$x = \frac{3}{2-t}$$
, $y = \frac{t}{t+1}$. Write your final answer in the form y as a simplified function of x.

$$y = \frac{2 - \frac{2}{x}}{3 - \frac{2}{x}} \cdot \frac{x}{x}$$

$$y = \frac{2x - 3}{3x - 3}$$

Find parametric equations for the line through the points (5, -7) and (-3, -2). SCORE: /3 PTS NOTE: Do NOT use either x = t nor y = t. GRACE AGAINS) ONE VERSION

Find parametric equations for the circle that has a diameter with endpoints (4, -8) and (4, 6). SCORE: /3 PTS CENTER= (4, -8+6)= (4,-1) X=4+/cost, 1 12ADIUS = 6-8 = 7(1) OTHER ANSWERS POSSIBLE-TALK TO ME

"X=" AND " Y=